Abstract
BackgroundThis study was designed to determine the correlation between functional recovery and the extent of axonal regeneration after muscle reinnervation with our recently developed nerve-muscle-endplate band grafting (NMEG) technique in a rat model. Materials and methodsThe right experimentally paralyzed sternomastoid (SM) muscle by nerve transection was immediately reinnervated with an NMEG pedicle harvested from a neighboring sternohyoid muscle. The NMEG pedicle contained a muscle block (6 × 6 × 3 mm), a donor nerve branch with nerve terminals, and a motor endplate band. Three months after surgery, the tetanic force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. ResultsThe results showed that the maximal tetanic force (a measure of muscle functional recovery) of the NMEG-reinnervated SM muscle reached up to 66.0% of the normal control. The wet weight of the reinnervated SM muscle (a measure of muscle mass recovery) was 87.2% of the control. The area fraction of the regenerating axons visualized with neurofilament staining within the NMEG-reinnervated SM muscle (a measure of muscle reinnervation) was 42.3%. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. ConclusionsOur newly developed NMEG technique results in satisfactory functional outcomes and nerve regeneration. Further improvement in the functional recovery after NMEG reinnervation could be achieved by refining the surgical procedure and creating an ideal environment that favors axon-endplate connections and accelerates axonal growth and sprouting.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have