Abstract

Simple SummaryAs the longissimus dorsi muscle is the largest muscle in the equine back, it has great influence on the stability of the spine and facilitates proper locomotion. In general, muscle function is determined by its specific intramuscular architecture. However, only limited three-dimensional metrical data are available for the inner organisation of the equine longissimus dorsi muscle. The thoracic and lumbar longissimus muscles of five formalin-fixed cadaveric horse backs of different ages and body types were dissected layerwise from cranial to caudal. Three-dimensional coordinates along individual muscle fibre bundles were digitised from the origin to the insertion and 3D models were created using imaging software and computed tomography. The muscle was divided into functional compartments and morphometric parameters (muscle fascicle length, pennation angles, muscle volume and the physiological cross-sectional area (PCSA)) were determined. Fascicle length showed the highest values in the thoracic region and decreased from cranial to caudal, while in most caudal compartments, fascicle length was less than 50% of the fascicle length in thoracic compartments. The pennation angles differ between compartments. In the cranial compartment, fascicles almost run parallel to the horizontal plane (mean angle 0°), while in the caudal compartment, the angles increase up to a mean angle of 38°. In the sagittal plane, the pennation angles varied from parallel (0°) in cranial compartments to 0–22° in the caudal compartments. The muscle volume ranged from 1350 cm3 to 4700 cm3 and PCSA from 219 cm2 to 700 cm2. This study lays the anatomical basis for a biomechanical model to simulate muscle function.As the longissimus dorsi muscle is the largest muscle in the equine back, it has great influence on the stability of the spine and facilitates proper locomotion. The longissimus muscle provides support to the saddle and rider and thereby influences performance in the horse. Muscular dysfunction has been associated with back disorders and decline of performance. In general, muscle function is determined by its specific intramuscular architecture. However, only limited three-dimensional metrical data are available for the inner organisation of the equine longissimus dorsi muscle. Therefore, we aimed at investigating the inner architecure of the equine longissimus. The thoracic and lumbar longissimus muscles of five formalin-fixed cadaveric horse backs of different ages and body types were dissected layerwise from cranial to caudal. Three-dimensional coordinates along individual muscle fibre bundles were recorded using a digitisation tool (MicroScribe®), to capture their origin, insertion and general orientation. Together with skeletal data from computed tomography (CT) scans, 3D models were created using imaging software (Amira). For further analysis, the muscle was divided into functional compartments during preparation and morphometric parameters, such as the muscle fascicle length, pennation angles to the sagittal and horizontal planes, muscle volume and the physiological cross-sectional area (PCSA), were determined. Fascicle length showed the highest values in the thoracic region and decreased from cranial to caudal, with the cranial lumbar compartment showing about 75% of cranial fascicle length, while in most caudal compartments, fascicle length was less than 50% of the fascicle length in thoracic compartments. The pennation angles to the horizontal plane show that there are differences between compartments. In most cranial compartments, fascicles almost run parallel to the horizontal plane (mean angle 0°), while in the caudal compartment, the angles increase up to a mean angle of 38°. Pennation angles to the sagittal plane varied not only between compartments but also within compartments. While in the thoracic compartments, the fascicles run nearly parallel to the spine, in the caudal compartments, the mean angles range from 0–22°. The muscle volume ranged from 1350 cm3 to 4700 cm3 depending on body size. The PCSA ranged from 219 cm2 to 700 cm2 depending on the muscle volume and mean fascicle length. In addition to predictable individual differences in size parameters, there are obvious systemic differences within the muscle architecture along the longissimus muscle which may affect its contraction behaviour. The obtained muscle data lay the anatomical basis for a specific biomechanical model of the longissimus muscle, to simulate muscle function under varying conditions and in comparison to other species.

Highlights

  • Back pain is a very common problem in horses and very hard to detect

  • Because of the important role of the thoracolumbar longissimus dorsi muscle, especially in the ridden horse [8], it is plausible that strain in this muscle might lead to back pain

  • The horses were dissected according to the “Good Scientific Practice and Ethics in Science and Research” regulation emplemented at the University of Veterinary Medicine Vienna

Read more

Summary

Introduction

Back pain is a very common problem in horses and very hard to detect. It is often discovered too late by poor performance or gait abnormalities [1]. Those muscle fibre bundles or fascicles are distinguishable in formalin-fixed tissue and can be used to characterise muscle architecture Architectural parameters, such as fascicle length and pennation angle, have a major impact on the contractibility and muscle function [11,12,13,14,15]. Previous anatomical studies of the equine back mainly focus on the general skeletal and ligamentous structures and their function [16,17,18], whereas detailed data and knowledge about the inner muscle architecture are limited. Additional information, like PCSA, total length and volume, should give insight into the general longissimus muscle architecture and support already available literature. In addition to the description and measurements of inner muscle architecture of the LG as one of the most important back muscles, a three-dimensional visualisation will help understand muscle structure more thoroughly and be of great didactic value for veterinary anatomy training

Specimen Preparation
Anatomical Description
Inner Muscle Architecture

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.