Abstract

AbstractThe next‐generation wearable biosensors with highly biocompatible, stretchable, and robust features are expected to enable the change of the current reactive and disease‐centric healthcare system to a personalized model with a focus on disease prevention and health promotion. Herein, a muscle‐fiber‐inspired nonwoven piezoelectric textile with tunable mechanical properties for wearable physiological monitoring is developed. To mimic the muscle fibers, polydopamine (PDA) is dispersed into the electrospun barium titanate/polyvinylidene fluoride (BTO/PVDF) nanofibers to enhance the interfacial‐adhesion, mechanical strength, and piezoelectric properties. Such improvements are both experimentally observed via mechanical characterization and theoretically verified by the phase‐field simulation. Taking the PDA@BTO/PVDF nanofibers as the building blocks, a nonwoven light‐weight piezoelectric textile is fabricated, which hold an outstanding sensitivity (3.95 V N−1) and long‐term stability (<3% decline after 7,400 cycles). The piezoelectric textile demonstrates multiple potential applications, including pulse wave measurement, human motion monitoring, and active voice recognition. By creatively mimicking the muscle fibers, this work paves a cost‐effective way to develop high‐performance and self‐powered wearable bioelectronics for personalized healthcare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.