Abstract

Muscle activation during self-resistance exercises was studied in 18 subjects performing (a) maximal unilateral isometric cocontractions of flexor and extensor muscles of the right elbow (UNI); (b) bilateral exercises consisting of maximal isometric extensions of the right elbow against the left elbow flexors (BiExt) and maximal isometric flexion of the right elbow against the left elbow extensors (BiFlex). Force production by the biceps brachii (BB), brachioradialis (BR), and triceps brachii (TB) during UNI, BiFlex, and BiExt were estimated by comparing the integrated surface electromyograms (iEMG) of BB, BR, and TB during UNI, BiExt, and BiFlex with the individual iEMG-force relationship determined from isometric contractions at 30, 60, and 100% maximal voluntary contraction during elbow flexion (MVCflex) or extension (MVCext) against a force transducer. During BiFlex for BB or BR and BiExt for TB, the values (mean ± SE) of BB-iEMG, BR-iEMG, and TB-iEMG were 74.0 ± 4.5, 76.6 ± 5.7, and 84.4 ± 4.5% iEMG at MVC (% iEMGmax). The forces were 86.0 ± 3.7% TB-Forcemax during BiExt, 74.1 ± 3.6% BB-Forcemax and 71.8 ± 4.0% BR-Forcemax during BiFlex. During UNI, BB-iEMG, BR-iEMG, and TB-iEMG were 59.9 ± 4.6, 53.4 ± 4.0, and 66.3 ± 4.7% iEMGmax, respectively. The forces during UNI (70.4 ± 4.0% TB-Forcemax, 60.4 ± 4.3% BB-Forcemax, and 49.2 ± 3.1% BR-Forcemax) were significantly lower than those during bilateral exercises. A 2-way analysis of variance (Muscle × Exercise) indicated that the effects of Muscle and Exercise upon % iEMGmax were significant (p < 0.05; p < 0.001, respectively). In conclusion, bilateral opposition exercises should be more effective in developing strength than cocontraction exercises, which correspond to a moderate activation level even for weak agonist muscle groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call