Abstract
Humans with cervical spinal cord injury (SCI) often recover voluntary control of elbow flexors and, to a much lesser extent, elbow extensor muscles. The neural mechanisms underlying this asymmetrical recovery remain unknown. Anatomical and physiological evidence in animals and humans indicates that corticospinal and reticulospinal pathways differentially control elbow flexor and extensor motoneurons; therefore, it is possible that reorganization in these pathways contributes to the asymmetrical recovery of elbow muscles after SCI. To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the arm representation of the primary motor cortex, maximal voluntary contractions, the StartReact response (a shortening in reaction time evoked by a startling stimulus), and the effect of an acoustic startle cue on MEPs elicited by cervicomedullary stimulation (CMEPs) on biceps and triceps brachii in males and females with and without chronic cervical incomplete SCI. We found that SCI participants showed similar MEPs and maximal voluntary contractions in biceps but smaller responses in triceps compared with controls, suggesting reduced corticospinal inputs to elbow extensors. The StartReact and CMEP facilitation was larger in biceps but similar to controls in triceps, suggesting enhanced reticulospinal inputs to elbow flexors. These findings support the hypothesis that the recovery of biceps after cervical SCI results, at least in part, from increased reticulospinal inputs and that the lack of these extra inputs combined with the loss of corticospinal drive contribute to the pronounced weakness found in triceps.SIGNIFICANCE STATEMENT Although a number of individuals with cervical incomplete spinal cord injury show limited functional recovery of elbow extensors compared with elbow flexor muscles, to date, the neural mechanisms underlying this asymmetrical recovery remain unknown. Here, we provide for the first time evidence for increased reticulospinal inputs to biceps but not triceps brachii and loss of corticospinal drive to triceps brachii in humans with tetraplegia. We propose that this reorganization in descending control contributes to the asymmetrical recovery between elbow flexor and extensor muscles after cervical spinal cord injury.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have