Abstract

Muscarine-induced membrane responses were studied in dissociated chromaffin cells of the guinea-pig adrenal medulla, using the whole-cell version of the patch-clamp technique. Bath application of muscarine (1-10 microM) produced two distinct current responses at a holding potential of -40 mV. One is an inward current associated with an increase in current noise. This current response was sustained during stimulation and had a reversal potential of 4.5 +/- 3.4 mV (n = 6) with a negative slope conductance below about -30 mV in 12.5 mM K(+)-containing perfusate. The other is a transient outward current. This was evoked at membrane potentials more positive than -60 mV and completely suppressed by addition of 2 mM TEA to the bath solution, suggesting a possible involvement of the Ca2(+)-dependent K+ channel. Generation of the outward current response was suppressed for at least 60-90 s following 25 s muscarinic stimulation and was facilitated by activation of the nicotinic receptor. The maximum inward current seemed to be produced by 3 microM, whereas the threshold concentration required for generation of the outward current was somewhere between 3 and 10 microM. The outward current was evoked less often in cells treated with 2% collagenase for 1 h than in those treated with 0.2% for 30 min. The results suggest that guinea-pig chromaffin cells have two muscarinic receptors: one is coupled with a cation nonselective channel and the other may be related to a Ca2(+)-dependent K+ channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.