Abstract

Rapidly progressive glomerulonephritis is characterized by glomerular necroinflammation and crescent formation. Its treatment includes unspecific and toxic agents; therefore, the identification of novel therapeutic targets is required. The E3-ubiquitin ligase murine double minute (MDM)-2 is a nonredundant element of NF-κB signaling and the negative regulator of tumor suppressor gene TP53-mediated cell cyclearrest and cell death. We hypothesized that the MDM2 would drive crescentic glomerulonephritis byNF-κB-dependent glomerular inflammation and by p53-dependent parietal epithelial cell hyperproliferation. Indeed, the pre-emptive MDM2 blockade by nutlin-3a ameliorated all aspects of crescentic glomerulonephritis. MDM2 inhibition had identical protective effects in Trp53-deficient mice, with the exception of crescent formation, which was not influenced by nutlin-3a treatment. Invitro experiments confirmed the contribution of MDM2 for induction of NF-κB-dependent cytokines in murine glomerular endothelial cells and for p53-dependent parietal epithelial cell proliferation. To evaluate MDM2 blockade as a potential therapeutic intervention in rapidly progressive glomerulonephritis, we treated mice with established glomerulonephritis with nutlin-3a. Delayed onset of nutlin-3a treatment was equally protective as the pre-emptive treatment in abrogating crescentic glomerulonephritis. Together, the pathogenic effects of MDM2 are twofold, that is, p53-independent NF-κB activation increasing intraglomerular inflammation and p53-dependent parietal epithelial cell hyperplasia and crescent formation. We therefore propose MDM2 blockade as a potential novel therapeutic strategy in rapidly progressive glomerulonephritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.