Abstract
The MEG experiment makes use of one of the world's most intense low energy muon beams, in order to search for the lepton flavour violating process $\mu^{+} \rightarrow {\rm e}^{+} \gamma$. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be $P_{\mu} = -1$ by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be $P_{\mu} = -0.85 \pm 0.03 ~ {\rm (stat)} ~ { }^{+ 0.04}_{-0.05} ~ {\rm (syst)}$ at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our ${\megsign}$ search induced by the muon radiative decay: $\mu^{+} \rightarrow {\rm e}^{+} \bar{\nu}_{\mu} \nu_{\rm e} \gamma$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.