Abstract

Mixtures of sewage sludge, waste oil sludge, and metal oil sludge were prepared and carbonized at 950 degrees C in an inert atmosphere. Dynamic adsorption of H2S was measured on the materials obtained, and the breakthrough capacity was calculated. The initial and exhausted adsorbents after the breakthrough tests were characterized using sorption of nitrogen, thermal analysis, and XRF, XRD, and surface pH measurements. Mixing sludges leads to very high capacity adsorbents on which hydrogen sulfide is oxidized to elemental sulfur. Although the micropore volume of the adsorbents obtained is not high, their high volume of mesopores contributes significantly to reactive adsorption and provides space to store the oxidation products. The H2S breakthrough capacity on the new materials reaches 10 wt %. These adsorbents work until all active pores are filled and the catalytic centers are exhausted. The reason for such high capacity is in the formation of catalytically active mineral like phases during pyrolysis in the presence of nitrogen and carbon. This highly dispersed phase provides basicity and catalytic centers for hydrogen sulfide dissociation and its oxidation to sulfur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call