Abstract

An atom interferometer based on Doppler-insensitive Raman transition is proposed, which has sharply peaked interference fringes for multi-wave interference. We show that two sets of counter-propagating Doppler-insensitive Raman beam pairs can be used to construct a new type of multi-wave beam splitter, which can be used to construct an atom interferometer. Although the spacing between adjacent diffraction orders of the interferometer is small, they can be distinguished by the internal state of the atom. Our analysis shows that the width of the fringes of this atom interferometer is inversely proportional to the width (duration) of the beam splitter and the Rabi frequency of the Raman beams, that is, the interferometer can achieve high resolution at high light intensity and long pulse width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.