Abstract

In order to analyze the effect of multiwalled carbon nanotubes on the thermal transport/stability characteristics of styrene butadiene rubber, five diverse loadings of multiwalled carbon nanotubes were impregnated in the rubber matrix using dispersion kneader and two roller mixing mill. Thermal conductivity and thermal impedance of the nanocomposite specimens were evaluated according to ASTM E1225-99 and D5470-03. It was observed that the thermal conductivity was reduced up to 79% while thermal impedance of the polymer nanocomposite was improved up to 390% at 523 K with 1 wt% impregnation of nanotubes into the base composite formulation. Thermal stability of the polymer nanocomposite was augmented up to 6%, with the utmost incorporation of the nanotubes. Glass transition and crystallization temperatures were diminished, while the onset and peak melting temperatures were increased with increasing filler to matrix ratio. The percent crystallinity of the nanocomposites has been augmented up to 5%, with 1 wt% incorporation of multiwalled carbon nanotubes into the host matrix. Scanning electron microscopy along with energy dispersive X-ray spectroscopy was used to examine the multiwalled carbon nanotubes dispersion in the rubber matrix, for surface analysis of the post-thermally tested composite specimens and for their compositional analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call