Abstract

Malformations of cortical development (MCD) are traditionally considered as a cause of epilepsy. Our aim was to study patients with focal MCD, by using multivoxel proton MR spectroscopy; we focused not only on the lesion but also on the normal-appearing contralateral side (NACS). Our hypothesis was that the metabolic abnormality extends to the NACS; therefore, it would be inadequate to consider NACS as an internal control. We studied 16 patients with focal MCD. MR spectroscopy was performed by using a point-resolved spectroscopy sequence technique, including the MCD area and the NACS. In each volume of interest, a smaller volume of interest of 2.25 cm(3) centered on the MCD was selected to study the N-acetylaspartate/creatine (NAA/Cr) ratio. In NACS, this ratio was studied by placing a symmetric voxel in comparison with the smaller MCD volume of interest. A control group (n=30) was also studied to evaluate both white and gray matter by using the same MR spectroscopy protocol. From 16 analyzed volumes of interest with MCD, 9 were composed of gray matter heterotopia and 7 of cortical dysplasia. MR spectroscopy of both MCD lesions and NACS (n=10) showed decreased NAA/Cr compared with that of the control group. NACS in these patients did not present significant differences regarding NAA/Cr in comparison with the affected side. MR spectroscopy demonstrated abnormal NAA/Cr in both MCD lesions and NACS in patients harboring focal MCD, giving support to the hypothesis that in MCD metabolic abnormalities extend far away from the limits of the lesion, reaching the contralateral side.

Highlights

  • AND PURPOSE: Malformations of cortical development (MCD) are traditionally considered as a cause of epilepsy

  • MCD are widely recognized as a relevant cause of refractory epilepsy

  • Congenital malformations were found in 14% of autopsied brains from patients with epilepsy; of those, 46.5% had migrational disorders.[1]

Read more

Summary

Objectives

Our aim was to study patients with focal MCD, by using multivoxel proton MR spectroscopy; we focused on the lesion and on the normal-appearing contralateral side (NACS).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call