Abstract

Multiview learning (MVL), by exploiting the complementary information among multiple feature sets, can improve the performance of many existing learning tasks. Support vector machine (SVM)-based models have been frequently used for MVL. A typical SVM-based MVL model is SVM-2K, which extends SVM for MVL by using the distance minimization version of kernel canonical correlation analysis. However, SVM-2K cannot fully unleash the power of the complementary information among different feature views. Recently, a framework of learning using privileged information (LUPI) has been proposed to model data with complementary information. Motivated by LUPI, we propose a new multiview privileged SVM model, multi-view privileged SVM model (PSVM-2V), for MVL. This brings a new perspective that extends LUPI to MVL. The optimization of PSVM-2V can be solved by the classical quadratic programming solver. We theoretically analyze the performance of PSVM-2V from the viewpoints of the consensus principle, the generalization error bound, and the SVM-2K learning model. Experimental results on 95 binary data sets demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.