Abstract
In recent years, supply chain finance (SCF) is exploited to solve the financing difficulties of small‐ and medium‐sized enterprises (SMEs). SME credit risk assessment is a critical part in the SCF system. The diffusion of SME credit risk may cause serious consequences, leading the whole supply chain finance system unstable and insecure. Compared with traditional credit risk assessment models, the supply chain relationship, credit condition of SME, and core enterprises should all be considered to rate SME credit risk in SCF. Traditional methods mix all indicators from different index systems. They cannot give a quantitative result on how these index systems work. Furthermore, traditional credit risk assessment models are heavily dependent on the number of annotated SME data. However, it is implausible to accumulate enough credit risky SMEs in advance. In this paper, we propose an adaptive heterogenous multiview graph learning method to tackle the small sample size problem for SMEs’ credit risk forecasting. Three graphs are constructed by using indicators from supply chain operation, SME financial indicator, and nonfinancial indicator individually. All the graphs are integrated in an adaptive manner, providing a quantitative explanation on how the three parts cooperate. The experimental analysis shows that the proposed method has good performance for determining whether SME is risky or nonrisky in SCF. From the perspective of SCF, SME financing ability is still the main factor to determine the credit risk of SME.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.