Abstract

We present a novel process for acquiring detailed facial geometry with high resolution diffuse and specular photometric information from multiple viewpoints using polarized spherical gradient illumination. Key to our method is a new pair of linearly polarized lighting patterns which enables multiview diffuse-specular separation under a given spherical illumination condition from just two photographs. The patterns -- one following lines of latitude and one following lines of longitude -- allow the use of fixed linear polarizers in front of the cameras, enabling more efficient acquisition of diffuse and specular albedo and normal maps from multiple viewpoints. In a second step, we employ these albedo and normal maps as input to a novel multi-resolution adaptive domain message passing stereo reconstruction algorithm to create high resolution facial geometry. To do this, we formulate the stereo reconstruction from multiple cameras in a commonly parameterized domain for multiview reconstruction. We show competitive results consisting of high-resolution facial geometry with relightable reflectance maps using five DSLR cameras. Our technique scales well for multiview acquisition without requiring specialized camera systems for sensing multiple polarization states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.