Abstract

This article presents a collaborative neurodynamic optimization (CNO) approach to multivehicle task assignments (TAs). The original combinatorial quadratic optimization problem for TA is reformulated as a quadratic unconstrained binary optimization (QUBO) problem with a quadratic utility function and a penalty function for handling load capacity and cooperation constraints. In the framework of CNO with a population of discrete Hopfield networks (DHNs), a TA algorithm is proposed for solving the formulated QUBO problem. Superior experimental results in four typical multivehicle operation scenarios are reported to substantiate the efficacy of the proposed neurodynamics-based TA approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.