Abstract

Cooperative target tracking by multiple vehicles connected through inter-vehicle communication is a promising way to improve the estimation of target state. The effectiveness of cooperative tracking closely depends on the accuracy of relative localization between host and cooperative vehicles. However, the localization signal usually provided by the satellite-based navigation system is rather susceptible to dynamic driving environment, thus influencing the effectiveness of cooperative tracking. In order to implement reliable cooperative tracking, especially when the statistical characteristic of the relative localization noise is time-varying and uncertain, this paper presents a recursive Bayesian framework which jointly estimates the state of the target and the cooperative vehicle as well as the localization noise parameter. An online variational Bayesian inference algorithm is further developed to achieve efficient recursive estimate. The simulation results verify that our proposed algorithm can effectively boost the accuracy of target tracking when the localization noise dynamically changes over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.