Abstract
Network data show the relationship among one kind of objects, such as social networks and hyperlinks on the Web. Many statistical models have been proposed for analyzing these data. For modeling cluster structures of networks, the infinite relational model (IRM) was proposed as a Bayesian nonparametric extension of the stochastic block model. In this brief, we derive the inference algorithms for the IRM of network data based on the variational Bayesian (VB) inference methods. After showing the standard VB inference, we derive the collapsed VB (CVB) inference and its variant called the zeroth-order CVB inference. We compared the performances of the inference algorithms using six real network datasets. The CVB inference outperformed the VB inference in most of the datasets, and the differences were especially larger in dense networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.