Abstract
The aim of this study is to explore how differences in cigarette physical design parameters influence tar, nicotine, and carbon monoxide (TNCO) yields in mainstream smoke (MSS) using the International Organization of Standardization (ISO) smoking regimen. Standardized smoking methods were used to evaluate 50 U.S. domestic brand cigarettes and a reference cigarette representing a range of TNCO yields in MSS collected from linear smoking machines using a nonintense smoking regimen. Multivariate statistical methods were used to form clusters of cigarettes based on their ISO TNCO yields and then to explore the relationship between the ISO generated TNCO yields and the nine cigarette physical design parameters between and within each cluster simultaneously. The ISO generated TNCO yields in MSS are 1.1-17.0 mg tar/cigarette, 0.1-2.2 mg nicotine/cigarette, and 1.6-17.3 mg CO/cigarette. Cluster analysis divided the 51 cigarettes into five discrete clusters based on their ISO TNCO yields. No one physical parameter dominated across all clusters. Predicting ISO machine generated TNCO yields based on these nine physical design parameters is complex due to the correlation among and between the nine physical design parameters and TNCO yields. From these analyses, it is estimated that approximately 20% of the variability in the ISO generated TNCO yields comes from other parameters (e.g., filter material, filter type, inclusion of expanded or reconstituted tobacco, and tobacco blend composition, along with differences in tobacco leaf origin and stalk positions and added ingredients). A future article will examine the influence of these physical design parameters on TNCO yields under a Canadian Intense (CI) smoking regimen. Together, these papers will provide a more robust picture of the design features that contribute to TNCO exposure across the range of real world smoking patterns.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have