Abstract

ABSTRACTBy utilizing a min-biaffine scalarization function, we define the multivariate robust second-order stochastic dominance relationship to flexibly compare two random vectors. We discuss the basic properties of the multivariate robust second-order stochastic dominance and relate it to the nonpositiveness of a functional which is continuous and subdifferentiable everywhere. We study a stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and develop the necessary and sufficient conditions of optimality in the convex case. After specifying an ambiguity set based on moments information, we approximate the ambiguity set by a series of sets consisting of discrete distributions. Furthermore, we design a convex approximation to the proposed stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and establish its qualitative stability under Kantorovich metric and pseudo metric, respectively. All these results lay a theoretical foundation for the modelling and solution of complex stochastic decision-making problems with multivariate robust second-order stochastic dominance constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.