Abstract
Abstract In this paper we propose a new algorithm to optimize the parameters of a compartmental problem describing tumor hypoxia. The method is based on a multivariate Newton approach, with Tikhonov regularization, and can be easily applied to data with diverse statistical distributions. Here we simulate [18 F]−fluoromisonidazole Positron Emission Tomography dynamic data of hypoxia of a neck tumor and describe the tracer flow inside tumor with a two-compartments compartmental model. We perform optimization on the parameters of the model via the proposed Multivariate Regularized Newton method and validate it against results obtained with a standard Levenberg-Marquardt approach. The proposed algorithm returns parameters that are closer to the ground truth while preserving the statistical distribution of the data.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have