Abstract

Limitations in protein production and secretion have been attributed to the inefficient folding rate of overexpressed proteins and the cellular response to the presence of overexpressed proteins in the endoplasmic reticulum (ER). In this study, we improved the yield of glucose oxidase (GOD) by manipulating genes involved in protein folding machinery and abnormal folding stress responses. First, genes with folding and secretion functions were used to modulate the folding rate of GOD in the ER and its secretion level in the cytoplasm. Next, the potential benefits of the ERAD elements were determined. Cellular resistance to ER derived stress was then strengthened by overexpressing the stress response gene GCN4. Furthermore, a module combination strategy, which co-expressed the SEC53, CNE1 and GCN4 genes, was employed to construct the Pichia pastoris strain S17. This increased the yield of GOD to 21.81g/L, with an activity of 1972.9U/mL, which were 2.53- and 5.11-fold higher, respectively, than the control strain. The work described here improved GOD production significantly, and the strategies employed in this study provide novel information for the large-scale production of heterologous proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.