Abstract

The search for versatile heterogeneous catalysts with multiple active sites for broad asymmetric transformations has long been of great interest, but it remains a formidable synthetic challenge. Here we demonstrate that multivariate metal-organic frameworks (MTV-MOFs) can be used as an excellent platform to engineer heterogeneous catalysts featuring multiple and cooperative active sites. An isostructural series of 2-fold interpenetrated MTV-MOFs that contain up to three different chiral metallosalen catalysts was constructed and used as efficient and recyclable heterogeneous catalysts for a variety of asymmetric sequential alkene epoxidation/epoxide ring-opening reactions. Interpenetration of the frameworks brings metallosalen units adjacent to each other, allowing cooperative activation, which results in improved efficiency and enantioselectivity over the sum of the individual parts. The fact that manipulation of molecular catalysts in MTV-MOFs can control the activities and selectivities would facilitate the design of novel multifunctional materials for enantioselective processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.