Abstract

Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In this paper, we develop current work on locally weighted regression and generalize locally weighted polynomial fitting to the estimation of partial derivatives in a multivariate regression context. Specifically, for both the regression and partial derivative estimators we prove joint asymptotic normality and derive explicit asymptotic expansions for their conditional bias and conditional convariance matrix (given observations of predictor variables) in each of the two important cases of local linear fit and local quadratic fit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.