Abstract

In the scope of energy management systems (EMSs) for microgrids, the forecasting module stands out as an essential element, significantly influencing the efficacy of optimal solution policies. Forecasts for consumption, generation, and market prices play a crucial role in both day-ahead and real-time decision-making processes within EMSs. This paper aims to develop a machine learning-based multivariate forecasting methodology to account for the intricate interplay pertaining to these variables from the perspective of day-ahead energy management. Specifically, our approach delves into the dynamic relationship between load demand variations and electricity price fluctuations within the microgrid EMSs. The investigation involves a comparative analysis and evaluation of recurrent neural networks’ performance to recognize the most effective technique for the forecasting module of microgrid EMSs. This study includes approaches based on Long Short-Term Memory Neural Networks (LSTMs), with architectures ranging from Vanilla LSTM, Stacked LSTM, Bi-directional LSTM, and Convolution LSTM to attention-based models. The empirical study involves analyzing real-world time-series data sourced from the Australian Energy Market (AEM), specifically focusing on historical data from the NSW state. The findings indicate that while the Triple-Stacked LSTM demonstrates superior performance for this application, it does not necessarily lead to more optimal operational costs, with forecast inaccuracies potentially causing deviations of up to forty percent from the optimal cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.