Abstract

Traffic flow prediction based on vehicle trajectories collected from the installed GPS devices is critically important to Intelligent Transportation Systems (ITS). One limitation of existing traffic prediction models is that they mostly focus on predicting road-segment level traffic conditions, which can be considered as a fine-grained prediction. In many scenarios, however, a coarse-grained prediction, such as predicting the traffic flows among different urban areas covering multiple road links, is also required to help government have a better understanding on traffic conditions from the macroscopic point of view. This is especially useful in the applications of urban planning and public transportation planning. Another limitation is that the correlations among different types of traffic-related features are largely ignored. For example, the traffic flow and traffic speed are usually negatively correlated. Existing works regard these traffic-related features as independent features without considering their correlations. In this article, we for the first time study the novel problem of multivariate correlation-aware multi-scale traffic flow predicting, and we propose a feature correlation-aware spatio-temporal graph convolutional networks named MC-STGCN to effectively address it. Specifically, given a road graph, we first construct a coarse-grained road graph based on both the topology closeness and the traffic flow similarity among the nodes (road links). Then a cross-scale spatial-temporal feature learning and fusion technique is proposed for dealing with both the fine- and coarse-grained traffic data. In the spatial domain, a cross-scale GCN is proposed to learn the multi-scale spatial features jointly and fuse them together. In the temporal domain, a cross-scale temporal network that is composed of a hierarchical attention is designed for effectively capturing intra- and inter-scale temporal correlations. To effectively capture the feature correlations, a feature correlation learning component is also designed. Finally, a structural constraint is introduced to make the predictions on the two scale traffic data consistent. We conduct extensive evaluations over two real traffic datasets, and the results demonstrate the superior performance of the proposal on both fine- and coarse-grained traffic predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call