Abstract

Laser Induced Breakdown Spectroscopy (LIBS) was used to determine elemental concentration of plutonium oxide surrogate (cerium oxide) residue for monitoring the fabrication of lanthanide borosilicate glass. Quantitative analysis by LIBS is affected by the severe limitation of variation in the induced plasma due to changes in the matrix. Multivariate calibration was applied to LIBS data to predict the concentrations of Ce, Cr, Fe, Mo, and Ni. A total of 18 different samples were prepared to compare calibration from univariate data analysis and from multivariate data analysis. Multivariate calibration was obtained using Principal Component Regression (PCR) and Partial Least Squares (PLS). Univariate calibration was obtained from background-corrected atomic emission lines. Calibration results show improvement in the coefficient of determination from 0.87 to 0.97 for Ce compared to univariate calibration. The root mean square error also reduced from 7.46 to 2.93%. A similar trend was obtained for Cr, Fe, Mo, and Ni also. These results clearly demonstrate the feasibility of using LIBS for online process monitoring in a hazardous waste management environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call