Abstract

In recent years, wavelet shrinkage has become a very appealing method for data de-noising and density function estimation. In particular, Bayesian modelling via hierarchical priors has introduced novel approaches for Wavelet analysis that had become very popular, and are very competitive with standard hard or soft thresholding rules. In this sense, this paper proposes a hierarchical prior that is elicited on the model parameters describing the wavelet coefficients after applying a Discrete Wavelet Transformation (DWT). In difference to other approaches, the prior proposes a multivariate Normal distribution with a covariance matrix that allows for correlations among Wavelet coefficients corresponding to the same level of detail. In addition, an extra scale parameter is incorporated that permits an additional shrinkage level over the coefficients. The posterior distribution for this shrinkage procedure is not available in closed form but it is easily sampled through Markov chain Monte Carlo (MCMC) methods. Applications on a set of test signals and two noisy signals are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.