Abstract

The advent of Markov Chain Monte Carlo (MCMC) methods to simulate posterior distributions has virtually revolutionized the practice of Bayesian statistics. Unfortunately, sensitivity analysis in MCMC methods is a difficult task. In this paper, a computationally low-cost method to estimate local parametric sensitivities in Bayesian models is proposed. The sensitivity measure considered here is the gradient vector of a posterior quantity with respect to the parameter. The gradient vector components are estimated by using a result based on the integral/derivative interchange. The MCMC simulations used to estimate the posterior quantity can be re-used to estimate the sensitivity measures and their errors, avoiding the need for further sampling. The proposed method is easy to apply in practice as it is shown with an illustrative example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call