Abstract

Stein’s method has been widely used for probability approximations. However, in the multi-dimensional setting, most of the results are for multivariate normal approximation or for test functions with bounded second- or higher-order derivatives. For a class of multivariate limiting distributions, we use Bismut’s formula in Malliavin calculus to control the derivatives of the Stein equation solutions by the first derivative of the test function. Combined with Stein’s exchangeable pair approach, we obtain a general theorem for multivariate approximations with near optimal error bounds on the Wasserstein distance. We apply the theorem to the unadjusted Langevin algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.