Abstract
We deal with a one dimensional multivalued backward stochastic differential equation associated to the subdifferential ∂hof a lower semi-continuous convex function h, with a local lipschitz coefficient (drift). When the terminal value is bounded, we prove the existence of a solution by using a suitable approximation of the drift by a double sequence of lipschitz functions. The uniqueness is obtained under the condition that the drift is local Lipschitz in y and globally Lipschitz in z. The existence result is an extension to the multivalued setting of the work of Hamadène
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.