Abstract
This paper investigates multi-topic aspects in automatic classification of clinical free text. In many practical situ- ations, we need to deal with documents overlapping with multiple topics. Automatic assignment of multiple ICD-9- CM codes to clinical free text in medical records is a typi- cal multi-topic text classification problem. In this paper, we facilitate two different views on multi-topics. The Closed Topic Assumption (CTA) regards an absence of topics for a document as an explicit declaration that this document does not belong to those absent topics. In contrast, the Open Topic Assumption (OTA) considers the missing topics as neutral topics. This paper compares performances of vari- ous interpretations of a multi-topic Text Classification prob- lem into a Machine Learning problem. Experimental results show that the characteristics of multi-topic assignments in the Medical NLP Challenge data is OTA-oriented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.