Abstract

This paper investigates multi-topic aspects in automatic classification of clinical free text in comparison with general text. In this paper, we facilitate two different views on multi-topics: the Closed Topic Assumption (CTA) and the Open Topic Assumption (OTA). Experimental results show that the characteristics of multi-topic assignments in the Computational Medicine Centre (CMC) Medical NLP Challenge Data is strongly OTA-oriented but general text Reuters-21578 is characterised in the middle of the OTA and CTA spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.