Abstract

Multi-time wave functions are wave functions for multi-particle quantum systems that involve several time variables (one per particle). In this paper we contrast them with solutions of wave equations on a space-time with multiple timelike dimensions, i.e., on a pseudo-Riemannian manifold whose metric has signature such as ${+}{+}{-}{-}$ or ${+}{+}{-}{-}{-}{-}{-}{-}$, instead of ${+}{-}{-}{-}$. Despite the superficial similarity, the two behave very differently: Whereas wave equations in multiple timelike dimensions are typically mathematically ill-posed and presumably unphysical, relevant Schr\"odinger equations for multi-time wave functions possess for every initial datum a unique solution on the spacelike configurations and form a natural covariant representation of quantum states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call