Abstract
Multi-time wave functions are wave functions that have a time variable for every particle, such as \documentclass[12pt]{minimal}\begin{document}$\phi (t_1,{\bm x}_1,\ldots ,t_N,{\bm x}_N)$\end{document}ϕ(t1,x1,...,tN,xN). They arise as a relativistic analog of the wave functions of quantum mechanics but can be applied also in quantum field theory. The evolution of a wave function with N time variables is governed by N Schrödinger equations, one for each time variable. These Schrödinger equations can be inconsistent with each other, i.e., they can fail to possess a joint solution for every initial condition; in fact, the N Hamiltonians need to satisfy a certain commutator condition in order to be consistent. While this condition is automatically satisfied for non-interacting particles, it is a challenge to set up consistent multi-time equations with interaction. We prove for a wide class of multi-time Schrödinger equations that the presence of interaction potentials (given by multiplication operators) leads to inconsistency. We conclude that interaction has to be implemented instead by creation and annihilation of particles, which, in fact, can be done consistently [S. Petrat and R. Tumulka, “Multi-time wave functions for quantum field theory,” Ann. Physics (to be published)]. We also prove the following result: When a cut-off length δ > 0 is introduced (in the sense that the multi-time wave function is defined only on a certain set of spacelike configurations, thereby breaking Lorentz invariance), then the multi-time Schrödinger equations with interaction potentials of range δ are consistent; however, in the desired limit δ → 0 of removing the cut-off, the resulting multi-time equations are interaction-free, which supports the conclusion expressed in the title.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.