Abstract
The energies of the frontier orbitals and their electron–hole binding energy are key quantities in organic electronics, such as organic light-emitting diodes (OLEDs) and solar cells. A method is developed for obtaining these quantities from ultraviolet photoelectron spectroscopy (UPS) and optical absorption spectroscopy, combined with calculations of the ionization energy (IE) and the electron affinity (EA). This method provides a more efficient and accurate determination of the lowest unoccupied molecular orbital (LUMO) together with the exciton binding energy. The concept is extended to element-sensitive core-level spectroscopies, such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), in order to obtain core exciton binding energies. Two prototypical organic molecules for OLED applications are used as examples, i.e., N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD) and dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT:CN). These...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have