Abstract
Reconfigurable intelligent surfaces (RISs) represent a highly promising technology that enhances the capacity and coverage of wireless networks by intelligently reconfiguring the wireless propagation environment in highly advanced wireless communications. The objective of this study is to solve the problem of secrecy rate maximization for multiple RIS-aided millimeter-wave communications by jointly optimizing the active RISs and the RIS phase shifts of the considered system. For this nonconvex problem, we propose multitask learning in a deep neural network to predict the RIS phase shift and active RISs. Numerical results based on realistic, three-dimensional, ray-tracing simulations show that the proposed solution can predict the RIS phase and active RIS with an accuracy rate > 96%. These results confirm the viability of RIS-aided secure wireless communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.