Abstract
Reconfigurable intelligent surfaces (RISs), also known as intelligent reflecting surfaces (IRSs), or large intelligent surfaces (LISs), have received significant attention for their potential to enhance the capacity and coverage of wireless networks by smartly reconfiguring the wireless propagation environment. Therefore, RISs are considered a promising technology for the sixth-generation (6G) of communication networks. In this context, we provide a comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies. We describe the basic principles of RISs both from physics and communications perspectives, based on which we present performance evaluation of multi-antenna assisted RIS systems. In addition, we systematically survey existing designs for RIS-enhanced wireless networks encompassing performance analysis, information theory, and performance optimization perspectives. Furthermore, we survey existing research contributions that apply machine learning for tackling challenges in dynamic scenarios, such as random fluctuations of wireless channels and user mobility in RIS-enhanced wireless networks. Last but not least, we identify major issues and research opportunities associated with the integration of RISs and other emerging technologies for applications to next-generation networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.