Abstract

Introducing a knowledge graph into a recommender system as auxiliary information can effectively solve the sparse and cold start problems existing in traditional recommender systems. In recent years, many researchers have performed related work. A recommender system with knowledge graph embedding learning characteristics can be combined with a recommender system of the following three forms: one-by-one learning, joint learning, and alternating learning. For current knowledge graph embedding, a deep learning framework only has one embedding mode, which fails to excavate the potential information from the knowledge graph thoroughly. To solve this problem, this paper proposes the Ripp-MKR model, a multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet, which combines joint learning and alternating learning of knowledge graphs and recommender systems. Ripp-MKR is a deep end-to-end framework that utilizes a knowledge graph embedding task to assist recommendation tasks. Similar to the MKR model, in the Ripp-MKR model, two tasks are associated with cross and compress units, which automatically share latent features and learn the high-order interactions among items in recommender systems and entities in the knowledge graph. Additionally, the model borrows ideas from RippleNet and combines the knowledge graph with the historical interaction record of a user’s historically clicked items to represent the user’s characteristics. Through extensive experiments on real-world datasets, we demonstrate that Ripp-MKR achieves substantial gains over state-of-the-art baselines in movie, book, and music recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.