Abstract
This paper presents a pair of hypothesis spaces (HSs) of vector-valued functions intended to be used in the context of multitask classification. While both are parameterized on the elements of reproducing kernel Hilbert spaces and impose a feature mapping that is common to all tasks, one of them assumes this mapping as fixed, while the more general one learns the mapping via multiple kernel learning. For these new HSs, empirical Rademacher complexity-based generalization bounds are derived, and are shown to be tighter than the bound of a particular HS, which has appeared recently in the literature, leading to improved performance. As a matter of fact, the latter HS is shown to be a special case of ours. Based on an equivalence to Group-Lasso type HSs, the proposed HSs are utilized toward corresponding support vector machine-based formulations. Finally, experimental results on multitask learning problems underline the quality of the derived bounds and validate this paper's analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.