Abstract
The object detection of the substation is the key to ensuring the safety and reliable operation of the substation. The traditional image detection algorithms use the corresponding texture features of single-class objects and would not handle other different class objects easily. The object detection algorithm based on deep networks has generalization, and its sizeable complex backbone limits the application in the substation monitoring terminals with weak computing power. This article proposes a multitargets joint training lightweight model. The proposed model uses the feature maps of the complex model and the labels of objects in images as training multitargets. The feature maps have deeper feature information, and the feature maps of complex networks have higher information entropy than lightweight networks have. This article proposes the heat pixels method to improve the adequate object information because of the imbalance of the proportion between the foreground and the background. The heat pixels method is designed as a kind of reverse network calculation and reflects the object's position to the pixels of the feature maps. The temperature of the pixels indicates the probability of the existence of the objects in the locations. Three different lightweight networks use the complex model feature maps and the traditional tags as the training multitargets. The public dataset VOC and the substation equipment dataset are adopted in the experiments. The experimental results demonstrate that the proposed model can effectively improve object detection accuracy and reduce the time-consuming and calculation amount.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.