Abstract
When tracking targets using radars and sonars, the number of targets and the origin of data is uncertain. Data may be false measurements or clutter, or they may be detections from an unknown number of targets whose possible trajectories and detection processes can only be described in a statistical manner. Optimal all-neighbor multi-target tracking (MTT) in clutter enumerates all possible joint measurement-to-track assignments and calculates the a posteriori probabilities of each of these joint assignments. The numerical complexity of this process is combinatorial in the number of tracks and the number of measurements. One of the key differences between most MTT algorithms is the manner in which they reduce the computational complexity of the joint measurement-to-track assignment process. We propose an alternative approach, using a form of soft assignment, that enables us to bypass this step entirely. Specifically, our approach treats possible detections of targets followed by other tracks as additional clutter measurements. It starts by approximating the a~priori probabilities of measurement origin. These probabilities are then used to modify the clutter spatial density at the location of the measurements. A suitable single target tracking (STT) filter then uses the modified clutter intensity for updating the track state. In effect, the STT filter is transformed into an MTT filter with a numerical complexity that is linear in the number of tracks and the number of measurements. Simulations show the effectiveness of this approach in a number of different multi-target scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have