Abstract

We show how certain widely used multistep approximation algorithms can be interpreted as instances of an approximate Newton method. It was shown in an earlier paper by the second author that the convergence rates of approximate Newton methods (in the context of the numerical solution of PDEs) suffer from a “loss of derivatives”, and that the subsequent linear rate of convergence can be improved to be superlinear using an adaptation of Nash–Moser iteration for numerical analysis purposes; the essence of the adaptation being a splitting of the inversion and the smoothing into two separate steps. We show how these ideas apply to scattered data approximation as well as the numerical solution of partial differential equations. We investigate the use of several radial kernels for the smoothing operation. In our numerical examples we use radial basis functions also in the inversion step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.