Abstract

In this paper we propose a multistage nonlinear blind interference cancellation (MS-NL-BIC) receiver for direct-sequence code-division multiple-access (DS-CDMA) systems. The receiver uses higher order statistics of the received baseband signal. Specifically, we use the second and fourth moments of the received signal to determine a component of the received vector that has significant mean energy and low variability of the energy, both of which are favorable characteristics for application in an interference cancellation scheme that uses hard decisions. The structure of the receiver is multidimensional and can be viewed as a matrix of receivers. Each row in the matrix consists of receivers that perform (hard decisions) cancellation of successive components that have significant mean energy and low variability of the energy. The columns of the matrix essentially resemble multistage receivers that iteratively refine performance from earlier stages. Simulation results show that unlike linear receivers, the MS-NL-BIC is exceptionally efficient in systems with strong and highly correlated interferers, as may be the case in overloaded DS-CDMA systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.