Abstract

We show that phase-repulsive coupling eliminates oscillations in a population of synthetic genetic clocks. For this, we propose an experimentally feasible synthetic genetic network that contains phase repulsively coupled repressilators with broken temporal symmetry. As the coupling strength increases, silencing of oscillations is found to occur via the appearance of an inhomogeneous limit cycle, followed by oscillation death. Two types of oscillation death are observed: For lower couplings, the cells cluster in one of two stationary states of protein expression; for larger couplings, all cells end up in a single (stationary) cellular state. Several multistable regimes are observed along this route to oscillation death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.