Abstract

A visible wide field multispectral system for comprehensive imaging of skin chromophores and blood vessels has been implemented, and an inhomogeneous Monte Carlo model of photon migration with randomly distributed blood vessels embedded in dermis has been developed. Predetermined nonlinear transforms have been obtained to address the nonlinear interdependent relationship among diffusive reflectance spectra, skin physiology properties, and geometry. For validation, in addition to real skin experiments and phantoms experiments, two alternative methods for blood vessel imaging have been used on the same set of subjects to compensate for the lack of ground truth for skin subsurface imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.