Abstract

Two-dimensional intersecting k-space trajectories have previously been demonstrated to allow fast multispectral imaging. Repeated sampling of k-space points leads to destructive interference of the signal coming from the off-resonance spectral peaks; on-resonance data reconstruction yields images of the on-resonance peak, with some of the off-resonance energy being spread as noise in the image. A shift of the k-space data by a given off-resonance frequency brings a second frequency of interest on resonance, allowing the reconstruction of a second spectral peak from the same k-space data. Given the higher signal-to-noise per unit time characteristic of a 3D acquisition, we extended the concept of intersecting trajectories to three dimensions. A 3D, rosette-like pulse sequence was designed and implemented on a clinical 1.5T scanner. An iterative density compensation function was developed to weight the 3D intersecting trajectories before Fourier transformation. Three volunteers were scanned using this sequence and separate fat and water images were reconstructed from the same imaging dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.