Abstract
Multispectral imaging system is of wide application in relevant fields for its capability in acquiring spectral information of scenes. Its limitation is that, due to the large number of spectral channels, the imaging process can be quite time-consuming when capturing high-resolution (HR) multispectral images. To resolve this limitation, this paper proposes a fast multispectral imaging framework based on the image sensor pixel-binning and spectral unmixing techniques. The framework comprises a fast imaging stage and a computational reconstruction stage. In the imaging stage, only a few spectral images are acquired in HR, while most spectral images are acquired in low resolution (LR). The LR images are captured by applying pixel binning on the image sensor, such that the exposure time can be greatly reduced. In the reconstruction stage, an optimal number of basis spectra are computed and the signal-dependent noise statistics are estimated. Then the unknown HR images are efficiently reconstructed by solving a closed-form cost function that models the spatial and spectral degradations. The effectiveness of the proposed framework is evaluated using real-scene multispectral images. Experimental results validate that, in general, the method outperforms the state of the arts in terms of reconstruction accuracy, with additional 20× or more improvement in computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.