Abstract

Probabilistic localization based on Bayesian theory has been researched as a sensor fusion method to improve the robustness of localization. Pieces of position information, generated by sensors’ observation models with consideration for noises, are fused according to Bayesian theory. However, having large noises not considered in their observation models, the sensors output erroneous position information; thus, the fusion result has a significant error, even when the other sensors output correct ones. In this research, we have proposed a sensor fusion system with a relative correlation checking test to realize robust localization. Pieces of erroneous position information, biased against others and having a negative correlation with others, are detected and excluded in our proposed system by checking their correlation between all of them. The purpose of this paper is to evaluate the robustness of our fusion system by conducting recursive localization experiments in various environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.