Abstract

Catastrophic optical mirror damage (COMD) limits the output power and reliability of lasers diodes (LDs). Laser self heating together with facet absorption of output power cause the facet to reach a critical temperature (Tc), resulting in COMD and irreversible device failure. The self-heating of the laser contributes significantly to the facet temperature, but it has not been addressed so far. We implement a multi-section waveguide method where the heat is separated from reaching the output facet by exploiting an electrically isolated window. The laser waveguide is divided into two electrically isolated laser and transparent window sections. The laser section is pumped at high current levels to achieve laser output, and the passive waveguide is biased at low injection currents to obtain a transparent waveguide with negligible heat generation. Using this design, we demonstrate facet temperatures lower than the junction temperature of the laser even at high output power operation. While standard LDs show COMD failures, the multi-section waveguide LDs are COMD-free. Our technique and results provide a pathway for high-reliability LDs, which would find diverse applications in semiconductor lasers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.